The yin and yang of calcium effects on synaptic vesicle endocytosis.
نویسندگان
چکیده
A large number of studies suggest that calcium triggers and accelerates vesicle endocytosis at many synapses and non-neuronal secretory cells. However, many studies show that prolonging the duration of the stimulation train, which induces more calcium influx, slows down endocytosis; and several studies suggest that instead of triggering endocytosis, calcium actually inhibits endocytosis. Here we addressed this apparent conflict at a large nerve terminal, the calyx of Held in rat brainstem, in which recent studies suggest that transient calcium increase up to tens of micromolar concentration at the micro/nano domain triggers endocytosis. By dialyzing 0-1 μM calcium into the calyx via a whole-cell pipette, we found that slow endocytosis was inhibited by calcium dialysis in a concentration-dependent manner. Thus, prolonged, small, and global calcium increase inhibits endocytosis, whereas transient and large calcium increase at the micro/nano domain triggers endocytosis and facilitates endocytosis. This yin and yang effect of calcium may reconcile apparent conflicts regarding whether calcium accelerates or inhibits endocytosis. Whether endocytosis is fast or slow depends on the net outcome between the yin and yang effect of calcium.
منابع مشابه
Developmental change in the calcium sensor for synaptic vesicle endocytosis in central nerve terminals.
Synaptic vesicle endocytosis is stimulated by calcium influx in mature central nerve terminals via activation of the calcium-dependent protein phosphatase, calcineurin. However, in different neuronal preparations calcineurin activity is either inhibitory, stimulatory or irrelevant to the process. We addressed this inconsistency by investigating the requirement for calcineurin activity in synapt...
متن کاملCalcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals
BACKGROUND Following exocytosis at the synapse, synaptic vesicle components are recovered by endocytosis. Morphological analysis has suggested that this occurs by a clathrin-mediated pathway, and the GTPase dynamin is thought to be involved in 'pinching off' endocytosing vesicles. The finding that the calcium-dependent phosphatase calcineurin can dephosphorylate dynamin and two other proteins i...
متن کاملDynamin I phosphorylation and the control of synaptic vesicle endocytosis.
The GTPase dynamin I is essential for synaptic vesicle endocytosis in nerve terminals. It is a nerve terminal phosphoprotein that is dephosphorylated on nerve terminal stimulation by the calcium-dependent protein phosphatase calcineurin and then rephosphorylated by cyclin-dependent kinase 5 on termination of the stimulus. Because of its unusual phosphorylation profile, the phosphorylation statu...
متن کاملThe calcineurin-dynamin 1 complex as a calcium sensor for synaptic vesicle endocytosis.
Exocytosis of synaptic vesicles is calcium-dependent, with synaptotagmin serving as the calcium sensor. Endocytosis of synaptic vesicles has also been postulated as a calcium-dependent process; however, an endocytic calcium sensor has not been found. We now report a physical association between the calcium-dependent phosphatase calcineurin and dynamin 1, a component of the synaptic endocytic ma...
متن کاملExtremely Low Frequency Electromagnetic Fields Facilitate Vesicle Endocytosis by Increasing Presynaptic Calcium Channel Expression at a Central Synapse.
Accumulating evidence suggests significant biological effects caused by extremely low frequency electromagnetic fields (ELF-EMF). Although exo-endocytosis plays crucial physical and biological roles in neuronal communication, studies on how ELF-EMF regulates this process are scarce. By directly measuring calcium currents and membrane capacitance at a large mammalian central nervous synapse, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 7 شماره
صفحات -
تاریخ انتشار 2014